

Tetrahedron Letters 41 (2000) 8131-8135

Electro-oxidative kinetic resolution of *sec*-alcohols by using an optically active *N*-oxyl mediator

Manabu Kuroboshi, Hiroshi Yoshihisa, Mariana N. Cortona, Yusuke Kawakami, Zake Gao and Hideo Tanaka*

Department of Applied Chemistry, Faculty of Engineering, Okayama University Tsushima-naka 3-1-1, Okayama, Okayama 700-8530, Japan

Received 19 July 2000; accepted 18 August 2000

Abstract

Electro-oxidative kinetic resolution of *sec*-alcohols mediated with a catalytic amount of an optically active *N*-oxyl was performed by use of a simple undivided cell under constant current conditions. The selectivity factor (*S*-value) increased remarkably when the reaction was performed at lower temperatures. The optically active *N*-oxyl was recovered and used repeatedly without any change in efficiency and selectivity. \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

Keywords: kinetic resolution; electrochemistry; oxidation; alcohols.

The preparation of chiral *sec*-alcohols is of importance for synthesis of chiral bioactive compounds and function materials. Among the methodologies developed for this purpose so far,¹ oxidative kinetic resolution using a chiral oxidant is a promising access to enantio-enriched alcohols from their racemates.² Electrochemical oxidation of alcohols has been well recognized as an environment-benign method since a catalytic amount of oxidant is enough to complete the oxidation through in situ electrochemical regeneration of the oxidant. Electrochemical kinetic resolution of *sec*-alcohols has been also developed by using an optically active *N*-oxyl compound as a mediator such as 2,³ electrodes modified with a chiral *N*-oxyl,⁴ and a combination of an achiral *N*-oxyl-modified electrode and chiral amine, e.g. sparteine.⁵ Most of these reactions were, however, carried out in a divided cell; hence, a high concentration of a supporting electrolyte, such as a quaternary ammonium salt, was indispensable to attain a practically significant current of electricity, causing serious environmental problems in a practical scale of the electrolysis. Satisfactory selectivities (*S* value)⁶ were obtained only when *N*-oxyl was immobilized in a polymer matrix on the electrode under strict control of the electrode potential. Electrode potential.

^{*} Corresponding author. Tel: +81-86-251-8074; fax: +81-86-251-8079; e-mail: tanaka95@cc.okayama-u.ac.jp

in the practical sense. We investigated electro-oxidation of alcohols in a double mediatory system comprising halide salts and *N*-oxyl compounds which can be operated in a simple undivided cell.⁷ In this report electro-oxidative kinetic resolution of *sec*-alcohols in a CH₂Cl₂– H_2O two-phase system involving bromide salts and an optically active *N*-oxyl mediator **1** is described. This is the first example of enantioselective electro-oxidation achieved in an undivided cell under constant current conditions, offering a simple operation for achieving high current efficiency as well as satisfactory selectivities (*S*=13–20) (Scheme 1).

Scheme 1. Electro-oxidative kinetic resolution of sec-alcohols using an optically active N-oxyl mediator

The optically active *N*-oxyl **1** was prepared according to the literature.⁸ A typical procedure of the kinetic resolution is as follows (Table 1, entry 1): A mixture of (\pm) -1-phenyl-1-ethanol **3a** (0.56 mmol) and **1** (0.005 mmol) in a two-phase solution of CH₂Cl₂ (4 mL) and a saturated aq. NaHCO₃ (4 mL) containing 20w% of NaBr was placed in a beaker-type undivided electrolysis

	Table 1				
Kinetic resolution	of (\pm) -1-phenyl-1-ethanol 3a .	Reaction	temperature	and	selectivity

	ОН	Chiral N-Oxyl 1 CH ₂ Cl ₂ -aq. NaBr/NaHCO ₃	OH	+ -	
	Ph´ Me <i>RS</i> -3a	(Pt)-(Pt), Undivided Cell 1.5 F/mol	Ph´ Me <i>R</i> - 3a	Ph' Me 4a	
Entry	Temp/°C	4a		3a	S^{c}
		Yield% ^a	Yield% ^a	Ee (<i>R</i>)/% ^b	
1	-15	57	43	91	16.4
2	-10	55	45	74	8.9
3	-5	46	53	52	6.3
4	0	40	57	44	5.7
5	18	52	47	16	1.6

^a Isolated yields.

^b Ee% were determined by HPLC using chiral column Daicel ChiralCel OD-H.

 $^{c}S = \ln[(1-C)(1-ee)]/\ln[(1-C)(1+ee)]$ where ee is the fractional enantiomeric excess and C is the conversion.

cell. Two Pt plate electrodes $(1.0 \times 1.5 \text{ cm}^2)$ were immersed into the aqueous layer. Electrolysis was carried out at -15° C under constant current density (15 mA/cm^2). After passage of 1.5 F/mol of electricity (ca 1.5 h),⁹ the mixture was poured into saturated aq. NaHCO₃, extracted with EtOAc, and dried over anhydrous Na₂SO₄. The organic layer was concentrated in vacuo, and the residue was chromatographed on a silica gel column to give the starting material **3a** (43%) and the corresponding ketone **4a** (57%). The recovered (*R*)-enriched **3a** was analyzed to be 91%ee by HPLC equipped with a chiral column Daicel ChiralCel OD-H. The selectivity factor, *S* value, was 16.4, which is much higher than that observed in the literature⁸ (0°C, 87% conv., 87%ee, *S*=7.1).

The ee% of **3a** and *S* value decreased significantly with increasing reaction temperature (Table 1). When the electrolysis was attempted at below -15° C, a part of the solvent was frozen and, consequently, no appreciable dc current could be passed and the electro-oxidation did not proceed at all.

The present optically active *N*-oxyl mediated electro-oxidation was successfully applied to the kinetic resolution of phenethyl alcohol derivatives **3** with a catalytic amount of **1**. Representative results are summarized in Table 2. When the aryl group of **3** was substituted with a chlorine, bromine, or alkyl group, stereoselectivity of the recovered **3** was high (**3b**, **3c**, **3d**). On the other hand, alkoxyl-substituted phenethyl alcohols (**3e**, **3f**) were easily oxidized but in low ee% and *S* value. The low *S* value for the alkoxylated substrates may be due to non-enantioselective oxidation such as direct oxidation. Indeed, when the electro-oxidation of 1-(4-methoxyphenyl)ethanol **3e** was performed without the *N*-oxyl **1**, a significant amount (ca 50%) of 4-methoxyphenyl methyl ketone was formed after passage of 2 F/mol of electricity, whereas no appreciable oxidation of 1-(4-chlorophenyl)ethanol was observed.

Oxidation of phenethyl alcohol derivatives 3 using the optically active N-oxyl 1									
	4		3	. c ⁰		4		3	Sc
Substrate	Yield ^a	Yield ^a	' Ee ^b	- 3	Substrate	Yield ^a	Yield ^a	Ee ^b	
OH 3a	57	43	91 (<i>R</i>) 16	^{/Bu} 3d	42	55	60 (<i>R</i>)	20
Br OH	54	42	81 (<i>F</i> i)) 13	MeO 3e	61	37	56 (<i>R</i>)	5.3
CI GH	58	41	88 (F	7) 13	OH 3t	72	23	54 (<i>R</i>)	2.0

Table 2

^a Isolated yields.

^b Determined by HPLC equipped with chiral column.

 $^{\circ}$ S = ln[(1 - C)(1 - ee)]/ln[(1 - C)(1 - ee)] where ee is the fractional enantiomeric excess and C is the conversion.

It is noteworthy that the optically active mediator 1 could be recovered after electrolysis and used repeatedly without any appreciable change in efficiency and selectivity (Table 3). In each of the entries, the *N*-oxyl 1 was recovered almost quantitatively after the electro-oxidation.

	OH Ph ∕ Me (<i>RS</i> -3a	Chiral <i>N</i> -Oxyl 1 ₂ Cl ₂ -aq. NaBr/NaHCO ₃ Pt)-(Pt), Undivided Cell -15 °C, 1.5 F/mol	OH O 	
Entry	4a		3a	S^{c}
	Yield% ^a	Yield% ^a	Ee (<i>R</i>)/% ^b	
1	52	43	91	16
2	53	42	90	16
3	52	46	90	17

 Table 3

 Recycle usage of the optically active N-oxyl 1

^a Isolated yields.

^b Determined by HPLC equipped with chiral column.

 $^{c}S = \ln[(1-C)(1-e)]/\ln[(1-C)(1+e)]$ where ee is the fractional enantiomeric excess and C is the conversion.

Although the reaction mechanism is not clear at present, an optically active *N*-oxoammonium species would be formed from oxidation of *N*-oxyl 1 and/or *N*-hydroxyl with the bromonium species [Br⁺] generated by electro-oxidation of the bromide ion in aqueous media (Scheme 1). The *N*-oxoammonium would react with the alcohol 3 to give an intermediate $A^{.7b}$ As the *N*-oxyl 1 is optically active, intermediate complexes with (*R*)-3 ($A_{R3/1}$) and (*S*)-3 ($A_{S3/1}$) are diastereomers of each other. Kinetic resolution might occur at this complex-formation stage: The steric environment of 1 would prefer the formation of the intermediate $A_{S3/1}$ rather than the intermediate $A_{R3/1}$.⁸ The ketone 4 may be formed by hydride transfer in the intermediate $A_{S3/1}$, and (*S*)-3 may be preferentially consumed. As a result, (*R*)-3 might be retained predominantly.

In conclusion, electro-oxidative kinetic resolution of *sec*-alcohol using an optically active N-oxyl **1** proceeds smoothly in a CH₂Cl₂-H₂O two-phase system to give optically active *sec*-alcohols in high recovery and high ee%. The electrolysis can be performed in a simple undivided cell under self-potential controlled conditions. The enantiomeric selectivity was increased when the electro-oxidation was carried out at lower temperature (-15°C). The catalyst **1** can be used repeatedly without any change in efficiency and selectivity.

References

- 1. Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley & Sons: New York, 1994. Swyden-Penne, J. Chiral Auxiliaries and Ligands in Asymmetric Synthesis; John Wiley & Sons: New York, 1995.
- 2. Kagan, H. B.; Fiaud, J. C. In *Topics in Stereochemistry*; Eliel, E. L.; Wilen, S., Eds.; Kinetic Resolution. John Wiley & Sons: New York, 1988.
- Kashiwagi, Y.; Yanagisawa, Y.; Kurashima, F.; Anzai, J.; Osa, T. *Tetrahedron Lett.* 1999, 40, 6469. Bobbit, J. M.; Hung, Q. T.; Ma, Z. J. Org. Chem. 1993, 58, 4837.
- 4. Kashiwagi, Y.; Kurashima, F.; Kikuchi, C.; Anzai, J.; Osa, T. In *Novel Trends in Electroorganic Synthesis*; Torii, S., Ed.; Springer-Verlag: Berlin, 1998.

- 5. Kashiwagi, Y.; Yanagisawa, Y.; Kurashima, F.; Anzai, J.; Osa, T. J. Chem. Soc., Chem. Commun. 1996, 2745.
- 6. Selective factor: $S = \ln[(1-C)(1-ee)]/\ln[(1-C)(1+ee)]$ where ee is the fractional enantiomeric excess of recovered **2a** and *C* is the conversion.²
- (a) Inokuchi, T.; Liu, P.; Torii, S. Chem. Lett. 1994, 1411. (b) Inokuchi, T.; Matsumoto, S.; Torii, S. J. Org. Chem. 1991, 56, 2416. (c) Inokuchi, T.; Matsumoto, S.; Nishiyama, T.; Torii, S. J. Org. Chem. 1990, 55, 462. (d) Idem, Synlett 1990, 57.
- 8. Rychnovsky, S. D.; McLernon, T. L.; Rajapakse, H. J. Org. Chem. 1996, 61, 1194. Although kinetic resolution of *sec*-alcohols with an optically active 1 and sodium hypochlorite was attempted, the selectivity was not necessarily high enough.
- 9. When 1.0 F/mol of electricity was passed, the ketone 4a and alcohol 3a were obtained in 37 and 61% yields, respectively.